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Advanced life support (ALS) systems require complex 
control strategies that can maintain stable system 
performance and balanced resources with small margins 
and minimal buffers. In closed-loop life support systems 
there are complex interactions between sub-systems such 
as air, water, food production, solids processing, and the 
crew.  Recent research at NASA Johnson Space Center has 
led to significant insights into autonomous control of ALS 
systems [Leon et al 1997; Kortenkamp et al 2001; 
Schreckenghost et al 2002].  Routine control of an ALS 
system is well within the reach of current techniques.  For 
example, the autonomous control system described in 
[Schreckenghost et al 1998] operated around the clock for 
73 straight days during a 90 day crewed test with minimal 
human intervention and the autonomous control system for 
a recent test of an advanced water recovery system 
operated with minimal human intervention for over 
eighteen months[Bonasso et al 2002].  However, these 
control systems are not able to deal convincingly with the 
concurrent and interacting control of several subsystems, to 
coordinate the effective and efficient long term 
management of resources with the planning of mission 
activities, and to demonstrate effective recovery from 
significant anomalies. A solution to these issues is needed 
in order to demonstrate life support systems amenable to 
efficient long-duration missions such as the human 
exploration of Mars. 

In this paper, we present a proposed multi-level 
computational architecture that integrates planning and 
hierarchical control schemes to develop a dynamic 
planning and control system that is reactive and fault-
adaptive, but at the same time, is designed to manage 
resources for the duration of a long mission. The 
computational architecture adopts a novel approach to 
integrating components of the 3T control architecture 
developed at NASA JSC and Metrica [Bonasso et al 1997] 
with the hierarchical model-based multi-level control 
systems that have been developed at Vanderbilt University 
[Abdelwahed et al 2005].  Neither 3T nor the multi-level 

model-based control architecture alone present the 
complete solution for long-duration autonomous 
operations.  The former lacks the dynamic models 
necessary to make efficient coordinated use of scarce 
resources and to maintain smooth transitions among 
controller states at finer granularity time scales, while the 
latter lacks domain procedural knowledge to understand 
the relations between mission goals and planned activities, 
and to allow the execution of specialized activities, such as 
maintenance and fault-recovery. Further, it is much harder 
to provide meaningful interfaces to the user through the 
control systems.  

This integrated computational architecture combines the 
best of these two approaches. Our general design uses the 
dynamic models of model-based control architecture to 
inform the state-based procedural schemas during plan 
development and execution, as well as to carry out the 
dynamic control of the habitat subsystems.  The 3T planner 
will provide overarching mission plans, while the 3T 
sequencer can instantiate procedures that would 
significantly increase the computational complexity 
associated with system analysis and decision making with 
the model-based control architecture. 

The 3T planning module drives the supervisory control 
scheme.  Given a top-level goal, such as “conduct habitat 
operations while supporting extravehicular activities 
(EVA)”, the planner automatically generates a habitat plan 
for a given duration. The planner reasons in depth about 
goals, resources and sequencing constraints.  It integrates 
mission goals with a priori knowledge, such as the crew 
schedule, EVA schedule, crop plantings and harvesting, 
and resource constraints. This knowledge is stored in the 
world model. During plan generation, the 3T planner draws 
from the task-resource consumption model of the Resource 
Manager (middle level), to take into account the dynamic 
effects of planning decisions.  The resulting plan steps and 
ordering will be tailored to make the best use of scarce 
resources.  Using the user interface capabilities of the 



planner, the plan can be reviewed by mission control 
operators and the habitat crew before going into effect.   

The middle level of our combined architecture consists of 
the 3T sequencer working in concert with the model-based 
supervisory controller.  To execute the plan, the planner 
passes the next step in the plan for each area of the habitat 
to the 3T sequencer, which decomposes the plan step into 
RAPs that are further decomposed until the final sequences 
are at the level of the system controllers in the third level 
of the architecture, e.g., the Water Recovery System 
(WRS) or the crop chambers. An example sequence for the 
Air Revitalization System (ARS) was given in the previous 
section.  A sequence to sustain crop growth might be 1) 
harvest a wheat crop, 2) harvest a soybean crop, 3) plant a 
soybean crop, 4) and harvest a salad crop.  The selection of 
RAPs from the RAP library will be guided by dynamic 
constraints provided by the models in the model based 
supervisor also in the middle layer. The resulting 
sequences are then passed to the supervisory controller 
through the model information interface, which uses them 
as ordering constraints; e.g., the supervisor may force the 
ordering of a set of parallel tasks to ensure that required 
resources will be produced while not violating energy 
constraints, or it may adjust the duration of one of the steps 
as in the previous scenario. Using resource constraints, the 
supervisory controller transforms the sequence into a 
schedule of control specifications for the system level 
controllers, which then carry out the execution sequence 
for their respective systems (e.g., Air Revitalization (ARS) 
and Water Recovery (WRS)). Mission controllers and the 
crew have access to the state of the executing procedures 
via the system state information access module. This is 
especially needed when the crew carries out maintenance 
and ad hoc procedures that do not follow nominal 
operating schemes. 

The system level controllers see each system as an input-
output module, where material and energy are input to the 
system with the goal of producing desired states within the 
system and output that can be expressed in terms of 
material, energy, and performance quality parameters. The 
input-output mappings created by these controllers define 
utility-based multi-criterion objective functions that the 
lowest-level subsystem controllers employ to optimize 
dynamic behavior of subsystems in a way that they 
minimize the use of resources, while producing the 
necessary output. For example, given the levels of gases 
and the amount of energy available to the ARS during the 
above example sequence period, the system controller for 
the ARS will regulate the CO2 and O2 stores to maximize 
the CO2 consumption to support the incineration 
operations. 

Results of the execution from the system controllers are 
aggregated from the subsystem controllers in the bottom 

later and provided to the supervisor.  In our current 
architecture, the subsystem controllers are designed to 
maintain set point control, i.e., maintain the operating 
region of their respective subsystems at levels and 
operating modes specified by the system controllers. The 
supervisor will update its dynamic models as well as pass 
the execution results to the sequencer as a set of execution 
states. The RAPS interpreter has the capability to 
determine new task sequences when faults occur in the 
system or in the face of unsuccessful execution of task 
steps. As RAPs sequences complete, the interpreter 
informs the planner which will update the plan and pass 
down the next plan step to be executed. Such an update 
may simply change start and stop times of steps while 
maintaining the original ordering.  If the RAPs interpreter 
reports a failure of a plan step, as in the case of the faulty 
CDRA above, the planner may replan the mission steps, 
adding or omitting steps depending on the effect of the 
failed step on the overall mission objectives.  As in plan 
generation, the task resource models of the supervisory 
controller will inform the replanning.  As well, users will 
be able to modify the plan at their discretion as the crew 
did in the above scenario by requiring that the EVA take 
place as originally scheduled. 

The principle of “cognizant failure” is still embodied in 
each level of the architecture.  The system controllers 
provide robust regulation of the habitat subsystems, 
notifying the middle layer of any failing processes.  The 
supervisory controller dynamically adjusts control 
schedules as the situation changes, informing the sequencer 
as to the state of tasks. The sequencer in turn serves as the 
mechanism to invoke alternate procedures as well as fault 
recovery procedures.  Equally important, in light of severe 
failure, the sequencer will invoke “safing” procedures for 
the habitat subsystems, informing the planner which in turn 
will carry out replanning.  

Additionally, the user has access to the levels of control 
where the aggregate of information and control stratagems 
is meaningful, and yet the complex details of such things 
as multi-criterion objectives functions remain hidden. 

Scenario 

We illustrate our proposed architecture through an example 
scenario.  We begin with the assumption of a ninety-day 
mission plan that is scheduled in 28-day segments.  Within 
the first 28-day period, the mission goal for the habitat 
might be “to conduct habitat operations while supporting 
an extravehicular activity (EVA) on day eighteen”.  An 
automated planning capability produces a plan of operation 
that includes tasks to maintain and operate the habitat, 
operate the water recovery system (WRS), air revitalization 
system (ARS) and crew quarters climate control, support 



the required EVA, sustain crop growth, and ensure safe 
disposal of solid waste.  Using resource models of the 
dynamics of the habitat subsystems the plan will make 
efficient use of power, air and water stores and habitat 
inventories.   

Next, a reactive planning capability selects routine 
procedures for carrying out the first step of each part of the 
plan for each subsystem.  For example, for the ARS: 
1) Seven days of nominal operations. 
2) Four days in high CO2 consumption state to clear CO2 

reservoirs in preparation for incineration operations,  
3) Four days in an extreme high CO2 state to scrub the 

CO2 resulting from incineration,  
4) One day providing O2 to tanks to be used for the 

upcoming 24 hour EVA on day eighteen, and  
5) Resume nominal operations on day ten. 
This sequence is then passed to a dynamic control 
execution capability that examines the existing resources 
for the ARS and suggests an extra day to ensure the O2 
tank level increases above a pre-determined value (say 10 
kg).  Since the extra day will still support the EVA on day 
eleven, the reactive planner makes no further changes to 
the ARS execution plan.  The dynamic control executive 
issues time-ordered control specifications for all the habitat 
systems (WRS, ARS, Power generation, Biomass, etc.) and 
their corresponding subsystems commensurate with the 
procedures (i.e., partial plan sequences) from the reactive 
planner. The subsystem controllers execute the directives 
“optimally” taking into account the continuous dynamics 
of the respective subsystem for the first nine days.  For 
example, a change detection algorithm might notice an 
increase in power usage in the CO2 removal system 
(CDRA), but its subsystem controller is able to compensate 
the increase by decreasing the heater temperature a little, 
and also adjusting blower and pump speeds.   
 
On day ten, however, the dynamic control executive 
determines that the CDRA behavior has continued to drift 
away from the nominal, and the system is operating sub-
optimally. By now, the fault detection module has reliably 
established that there is a restriction in the CO2 output line 
and also a leak is detected in the desiccant bed.  The 
system controller has adjusted for this by reducing Oxygen 
Generation Assembly (OGA) and CO2 Reduction System 
(CRS) (Sabatier) operating times, but if  this trend 
continues, air quality in the crew chamber will start 
dropping below acceptable levels, or lot more energy will 
have to be directed toward the CDRA. With the night 
period approaching, this is not considered a good option 
(by the supervisory control predictor). This situation is 
reported by the supervisory controller to the RAPS 
(reactive planner) unit. This unit (the Sequencer) is told 
that it will now take five days to clear the CO2 reservoirs.  

The reactive planner can make no adjustment that will 
compensate for the extra day and informs the planner. The 
planner sees the situation and determines there are options 
at this time such as (i) perform a CDRA repair and, (ii) 
drop the scheduled EVA activity. 

The habitat planner considers the situation, and through its 
own analysis using its world model determines that a new 
plan that includes a two-day crew task for repair of the 
CDRA, which will create an O2-restricted situation for a 
few days. As a result, the EVA activity is pushed back to 
day twenty, since one of the crew repairing the CDRA is 
also needed for the EVA. Furthermore, the astronauts are 
required to be cautious while exercising, e.g., none of the 
crew should exercise at the same time. 

At this stage, using an interface to the planner, the habitat 
commander informs the planner that the EVA task cannot 
be slipped because it involves a communications 
experiment that depends on the relative orbits of the moon 
and the earth about the sun, a constraint unknown to the 
habitat planner.  The planner, in further conference with 
the model-based resource manager, determines that if the 
crew completely omits their exercise period until after the 
EVA, the ARS can meet the incinerator and EVA 
requirements.  The resulting habitat plan omits crew 
exercise from the crew plan and schedules the CDRA 
repair after the EVA.  

When the CDRA repair takes place, the reactive planner 
will select an appropriate repair procedure for the crew and 
a set of modes for ARS and other affected subsystems, and 
the dynamic controller will execute these changes 
efficiently.  For example, oxygen generation may be 
suspended, thus reducing the water requirement from the 
WRS during the repair period.  As well, during the repair, 
the reactive planner will serve as the subsystem level 
interface to the dynamic controller. 

When the repair is complete, the dynamic controller will 
verify the normal operation of the CDRA and inform the 
reactive planner, which in turn informs the habitat planner.  
The habitat planner will adjust the inventory of materials 
used in the repair and replan if necessary. 

A key observation from this scenario is that once 
anomalous situations are detected, mechanisms kick in at 
different levels to attempt to contain and compensate for 
the fault, without having to sacrifice mission goals. For 
less critical faults of small magnitude, the subsystem 
controllers can compensate for the change in behavior. At 
the next level, the system controller may redistribute 
resources or, if possible reassign some tasks, to keep the 
system performance and output at different levels. Then 
the supervisory controller jumps in to determine if it can 
impose non-critical restrictions to avoid over draining of 



resources or reduction in effort without significant loss of 
capabilities. If the problems persist, the reactive planner or 
the replanner may be invoked to determine new plans. 
Last, mission control or the crew may want to change some 
of the mission goals to avoid potential problems. In all of 
these situations, decisions made at the top take precedence, 
which imply that the lower level units, especially the 
lower-level controllers have to change their strategy to 
satisfy the new requirements.  
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